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A perpetual motion machine of the second kind is described and its fallacy explained. The
pedagogical value of this and similar machines is discussed, and relevant calculations are made.

I. INTRODUCTION

A perpetual motion machine is an intellectual
contrivance which cannot be reduced to practice as a
working device.  Usually the inventor (or perpetrator) of
such a device claims to have conceived a scheme for
performing work either without the expenditure of energy
or else in a manner which results in a decrease in the
entropy of the universe.  Devices which are supposed to
operate in the former manner would do so in violation of
the first law of thermodynamics; they would create energy.
Such devices are called “perpetual motion machines of the
first kind”.  Devices of the latter sort are called “perpetual
motion machines of the second kind” because their
successful function would imply failure of the second law
of thermodynamics.

Perpetual motion machines may be used to instruct
students of physics in the application of physical laws in
challenging, even deceptive, contexts.  Finding the
conceptual flaw in such a device can be as instructive to a
student as figuring out why a real machine does function.
For the purpose of such an exercise it is considered
insufficient to invoke the first or second law to demonstrate
infeasibility.  The rules of this game require that
invalidation of the concept must be accomplished by
invoking other physical principles, thereby illustrating the
consistency of those principles with the thermodynamic
laws.

Many, perhaps most, perpetual motion machines which
have appeared in the literature illustrate the consistency of
mechanical and electrodynamical principles with the laws of
thermodynamics.  One which relates to the principles of
geometrical optics is a relative rarity among them.  Such a
device, a perpetual motion machine of the second kind, will
be discussed here.

II. GEOMETRICAL CONSTRUCTION OF THE
CAVITY

The principal component of this machine is a precisely
constructed evacuated reflective cavity.  There is more than
one version of it in oral tradition in the physics teaching
diaspora, but there seems to be no version in the accessible
literature.  The version to be discussed here is the only one
for which the author knows precise details.

The machine must employ a perfectly reflecting cavity
of a prescribed geometric shape to achieve optimum
function.  However, considerable deviation from strict
ideality can be tolerated and a perpetual motion machine of
reduced capability can still be conceived under nonideal
conditions.

The geometric construction of the reflective cavity is
based upon two confocal ellipsoids of revolution and a
sphere centered on one of the foci.  For an illustration of
the details of the geometric construction refer to the
numbered items in Figure 1.  The corresponding steps in
the construction follow:
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Figure 1.  Construction of the cavity.  See text for details.

1.  Points A and B are separated by a distance d.
2.  Construct an ellipsoid of revolution having moderately

large eccentricity ε and with A and B as its foci.  In the
figure ε = 0.9.

3.  Construct a sphere of radius r with B at its center.  The
radius should be a moderate fraction of d.  In the figure
r = 0.5 d.

4.  Construct a cone coaxial with the ellipsoid extending in
the direction of B with A as its vertex, and with the
circular intersection of the sphere and the ellipsoid
lying in it. The sphere also intersects the cone in a
second circle.

5.  Construct the ellipsoid of revolution which has A and B
as foci and which contains the second circular
intersection of the cone and sphere.

6.  Delete the portion of the smaller ellipsoid which lies
within the cone.

7.  Delete the portions of the sphere which lie within the
cone.

8.  Delete the portion of the larger ellipsoid which lies
outside the cone.

9.  Delete the cone.
©copyright 1996 by Leigh Hunt Palmer.



                 2

The inner surface of the cavity is coated to reflect all
wavelengths of electromagnetic radiation perfectly, and the
cavity is evacuated.

III. GEOMETRICAL OPTICAL PROPERTIES
OF THE CAVITY

When constructed in the manner prescibed the cavity
will have the following geometrical optical properties with
respect to rays which pass through its foci:

Every ray originating in or passing through point A
will be reflected once from the surface of the cavity and
then will pass through point B.  This is true because every
such ray must encounter either one or the other of the
confocal ellipsoidal reflectors, the critical division being
between the regions inside and outside the half-cone
constructed in step 5 above.  An ellipsoid of revolution is
aplanatic with respect to its foci.

Every ray originating in or passing through point B will
be reflected once from one of the three reflecting surfaces
before passing through either point A or point B.  Those
rays which are reflected from either of the ellipsoidal
surfaces will pass through point A without further
reflection.  Those rays which are reflected from the
spherical sueface will return directly to point B.

IV. OPERATION AS A PERPETUAL MOTION
MACHINE

The perpetrator of the device proposes that these
properties of the cavity can be exploited to extract heat
from a single thermal reservoir to perform an equal amount
of work.  This is accomplished by placing a small spherical
object, which will henceforth be called a "rock", at each of
the points A and B.  The rocks are taken to be identical,
with radii much less than the radius of the spherical
reflector.  The rocks are brought to thermal equilibrium
with a reservoir at temperature To before being placed in
the cavity.  Imagine them to be black bodies, though that
restriction will be seen to be unnecessary to the
hypothetical operation of the machine.

In what follows the rocks will be identified by names
which are the designations of the points at which they have
been placed.

Rocks A and B initially emit spectrally and
radiometrically identical thermal radiation.  According to
the optical properties of the cavity all of the radiation
which is emitted by A will be absorbed by B after a single
reflection from the cavity wall.  In addition, some of the
thermal radiation emitted by B will be reflected from the
spherical wall and will be reabsorbed by B.  The cavity wall
itself neither radiates nor absorbs since it is presumed to be
perfectly reflecting.  Thus when the temperatures af A and
B are equal, B absorbs more radiation than it emits, and A
emits more radiation than it absorbs.

The relative excess ∆ of power initially absorbed over
power radiated by B is proportional to the solid angle Ωs
subtended at point B by the spherical wall.

∆ = 
Ωs
4π

Hypothetically B initially absorbs (1+∆) times as much
energy as it radiates.  It is evident that A absorbs (1–∆)
times as much energy as it radiates at the same time.  The
numerical value of ∆ depends on the particular values
chosen for ε and r/d.  Calculation of ∆ for a particular case

is algebraically tedious and will be left as an exercise for
interested readers.

As a result of this radiation imbalance B will grow
warmer and A will grow cooler until they reach steady-state
temperatures at which their radiation power budgets are
balanced.  That condition will obtain when the temperature
ratio is given by

TB
TA

 = ( )1+∆
1–∆

1/4

 ≡ k(∆).

The purely geometrical parameter k(∆) will be used to
characterize the cavity geometry.

When steady-state obtains the two rocks are removed
from the cavity and connected to two Carnot heat engines,
B to the high temperature side of one engine, and A to the
low temperature side of the other.  Both engines are
connected to the reservoir at To as their unconnected
reservoir, and work is performed until the rocks reach
thermal equilibrium with the reservoir.

The rocks may now be returned to their positions in the
cavity and the cycle repeated.  The process can go on as
long as the temperature of the reservoir can be maintained,
a condition which qualifies the system as a perpetual
motion machine of the second kind.  It operates in a cycle,
the only effects of which are the extraction of a quantity of
heat from a reservoir and the performance of an equal
amount of work.

V. CALCULATIONS

The perpetual motion machine does not work, of course,
but it can be used to motivate calculation of consequences
if it were to work as hypothesized.  That is one of the
valuable teaching aspects attendant to introducing the
student to such machines in undergraduate courses.
Discussion of why the machine does not work will be
deferred until after some calculations of this type have been
discussed.

One problem which occurs to the student is "What is
the best I can do with this machine?"  It appears that there
is no attainable optimal value of k(∆), the geometrical
figure of merit for the cavity, other than a trivial one.  That
value is approached as ε goes to unity and r/d goes to one
half.  k(∆) approaches infinity as ∆ approaches unity.

Calculation of the value k(∆) for a particular geometry
is a fairly challenging problem in trigonometry and algebra.
For the example constructed above Ωs = 7.12 sr, and
k(∆) = 1.38

Given a particular geometry one needs another
hypothesis to solve the problem.  If each of the rocks has a
temperature independent heat capacity C it is easily shown
that the amount of work W which can be extracted from the
reservoir at To is given by

W = C To log k(∆)

VI. OPTIMIZATION AND DEVIATIONS
FROM IDEALITY

Losses due to less than total reflection (Consider
thermally conductive cavity in contact with reservoir at To
and calculate reduced efficacy.)

wave optical considerations
finite size of warm bodies
less than optimum geometry
the spatial (angular) distribution of radiation from the

surfaces (Lambertian vs radial radiators)
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VII. RESOLUTION

There is no fraud in the geometrical claim made for the
surface.  The fact that geometrical optics does not correctly
describe the radiation field inside the cavity is true.  Wave
optics will give a more precise, different solution, but the
larger one makes the cavity, the more nearly the
geometrical solution approaches the wave optical one.  The
honest resolution of the paradox does not lie this way.  It is
a geometrical paradox and it has a geometrical resolution.

The fact that the objects are not points, but have finite
extent, has also been brushed aside as the road to resolution
of the paradox.  This has usually been done by the
technique described above.  If the reflector dimensions are
reckoned in astronomical units and the objects are of
baseball size then that should be no problem here, either.

That argument is absolutely incorrect, as I will
demonstrate.

Consider the case of the reflecting structure increasing in
size in the first sense, then.  Consider those rays which
leave one object and diverge toward the highest curvature
region of the reflector at the opposite end of the structure,
the far vertex.  Some of those rays will strike the second
object directly, and those will all be absorbed.  The rest
will be focused on a region about the second focus.  That
region will have a lateral extent given simply by the
product of the lateral magnification and the size of the first
object.  The lateral magnification is equal to the negative of
the ratio of the image distance to the object distance, and
that is clearly less than unity for the rays under
consideration here.  Consequently all the rays under
consideration will strike the second object, just as the
paradox demands.

Note that the lateral magnification for rays near the
vertex is the same for reflectors of all scales due to the
manner in which we have expanded the reflector.  Lateral
magnification depends only on ratios of sizes, and we have
preserved these.

(I'm quite sure that those who have followed the
explanation this far need not be told the remainder of the
solution.  Here goes anyway.)

Consider next the rays which diverge from the first
object in the direction opposite the first group of rays,
toward the nearer vertex of the reflector.  Those rays will
converge upon a region around the second focus which has
a lateral extent greater than that of the second object, since
the lateral magnification in this case is the reciprocal of
that for the first group of rays.  Scaling the reflector up
didn't help at all, a result which is quite counterintuitive to
me, and which blinded me to the solution for some
considerable time.

Therein lies the fallacy of the energy sucker! The cavity
becomes a hohlraum filled with radiation, and that bathes
the objects in a common radiation field.  The whole system
comes to thermal equilibrium in an orderly manner.

I really like this paradox.  I've never seen it resolved
rigorously before reaching my own solution.  Since it was
born of geometry it is fiiting that it die geometrically, and I
claim it is now dead.


